
NASA-CR-197528

Computer Science Dept.

Stanford University

Stanford, CA 94305

Open Architectures for Formal Reasoning

and

i-l ,U A

t/, . _ l Cf

3 v-/_c_ 7

Deductive Technologies For Software Development

Final Report
511191-7131194

Grant no. NAG2-703

Principal Investigators

John McCarthy

Zohar Manna

Associate Investigators

Ian Mason

Amir Pnueli

Carolyn Talcott

Richard Waldinger

This project was organized as two separate subtasks: (i) Open Architectures for Formal Reasoning,

and (ii) Deductive Technologies -for Software Development. This final technical report consists of two

sections of text summarizing the results for the two subtasks respectively.

(NASA-CR-197528) OPEN

ARCHITECTURES FOR FORMAL REASONING

AND DEDUCTIVE TECHNOLOGIES FOR

SOFTWARE DEVELOPMENT Final

Technical Report, 1 May 199! - 31

Ju|. 1994 (Stanford Univ.) 16 p

N95-16586

Unclas

G3/61 0034007

1 Open Architectures for Formal Reasoning

The objective of this project is to develop an open architecture for formal reasoning systems. One

goal is to provide a framework with a clear semantic basis for specification and instantiation of

generic components; construction of corn plex systems by interconnecting components; and for making

incremental improvements and tailoring to specific applications. Another goal is to develop methods for

specifying component interfaces and interactions to facilitate use of existing and newly built systems as

"off the shelf" components, thus helping bridge the gap between producers and consumers of reasoning

systems.

In this report we summarize results in several areas: our data base of reasoning systems; a theory

of binding structures; a theory of components of open systems; a framework for specifying components

of open reasoning system; and an analysis of the integration of rewriting and linear arithmetic modules

in Boyer-Moore using the above framework.

1.1 Database

A database of existing automated reasoning systems is now available via anonymous ftp to

sail.stanford.edu in the directory pub/clt/ARS. A README file there provides further details.

Currently the entries consist of a brief description of the underlying logic, inference mechanisms,

interaction capabilities, documentation, and major applications. They also contain information on

availability and user support. The database will serve as a repository of information of interest to

builders and users of automated reasoning systems. It provides a place to put pointers to both

more detailed analyses, and eventually to rigorous specifications of interfaces and interactions. It will

also provide a concrete basis for building consensus on common languages for describing shared data

structures and semantics of systems.

The database will soon be put into html format to take advantage of the WWW browsing tools.

There are currently links to the database from numerous other Web pages including pages related to:

formal methods; automated reasoning; and programming language theory.

We are currently looking for ways to make the information more useful. One possible step in

this direction is suggested by email conversations with Landauer at AeroSpace. Namely designing

wrappings for database entries. Wrappings provide computer readable information about components

that facilitate their off-the-shelf use. AeroSpace is developing tools for using wrapping in design,

simulation, and configuration of complex systems.

1.2 Binding Structures

A theory of binding structures has been developed to facilitate representation and manipulation of

symbolic structures such as programs, logical formulae, derivations, specifications and modules. This

work in reported in [14, 13, 17]. Binding structures enrich traditional abstract syntax trees by providing

support for representing binding mechanisms and structures with schematic variables. The goal of this

work is to establish a common core for building tools such as theorem provers, transformers, static

analyzers, evaluators, rewriters, etc. that manipulate symbolic structures. Binding structures solve

problems of variable name conflict and renaming, and provide a means for manipulating occurrences

of structures. They incorporate the notion of syntactic context. This allows for expression of schemata

within the language rather than as meta-expressio_. Instantiating schematic variables is a mechanism

for capturing freevariables,in contrastto substitutionfor freevariables,whichavoidscapture. Our
focus has beenon finding clear descriptionsof operationson symbolicstructures. This has led
to such notions as parameterizedhomomorphismand uniform reductionrules. A parameterized
homomorphismis a simple structure walking tool that preservesbinding relationsevenin the
presenceof holes. Uniform reductionrulesincludetraditional term rewriting,combinatoryrewrite
systems,reductionrulesfor variouslambdacalculi,and programtransformationrules.Theycanbe
appliedto structureswith holes(schemata),and ruleapplicationcommuteswith holefilling (schema
instantiation). This is the keyproperty for beingableto reasonusingsymboliccomputation.The
notionof unificationof algebraictermsextendsnaturally to bindingstructures,usingsubstitutionfor
freeandexternallyboundvariables.Unificationwith respectto fillingholescorrespondsto unification
of higher-orderpatterns,a decidablefragmentof higher-orderunification. In bothcasesthere is a
most generalunifier. This work hasbeenusedin combinationwith workof Feferman[6] as the
basisfor implementationof a meta-logicfor specifyingand reasoningaboutlogicsand programming
languages[10]. The resultswill beusedin developingtools for specifyingandintegratingreasoning
systems,within theframeworkfor reasoningsystemsdescribedbelow.

1.3 A Theory of Open System Components

Our approachis basedon the Actor model [9, 1, 4]. Actors provide an abstract model of an open

distributed computer system. An actor is an encapsulated object that communicates with other

actors through asynchronous point-to-point message passing. New actors may be created dynmaically,

and actor addresses may be communicated in messages. An important aspect of the actor model

is the fairness requirement: message delivery is guaranteed, and individual actor computations are

guaranteed to progress.

It is important to note that our methodology is not dependent on any specific programming

notation. Instead, we assume only that the three basic operations: message sending, actor creation,

and change of local state, are in some way incorporated. In particular, the actor operators may be

used to "wrap" existing sequential programs, thus serving as an interconnection language.

To study the semantics of components of open systems we have defined an actor language that is

an extension of a simple functional language [3, 2]. Actors can be viewed as individual actor systems,

and systems can be composed to form larger systems. Our actor systems are open--they can send

messages outside the system, and designated actors can receive messages from outside the system.

Focusing on systems as well as individual actors has several advantages. It solves the problem of

compositionality - systems of actors may be composed. It provides a clean interface between the

component and its environment. Since our actor language provides a natural means of defining a

wide variety of operations for combining components, the theory of actors and actor systems provides

a means of expressing properties of such operations. As such it can be thought of as an algebra of

components.

The semantics for actor systems is given by a transition relation on open configurations. A

configuration contains a collection of actors, messages together with an interface specifying external

actor names, and receptionist names. The semantics of our language extends that of the embedded

functional language in such a way that the equational theory of the functional language is preserved.

The fairness assumption fo the actor model makes some aspects of reasoning more complicated,

but simplifies others. Many intuitively correct equations fail in the absence of fairness. We have

shown that in presence of fairness the three standard notions of observational equivalence for non-

deterministic/concurrent computation collapse to _wo. A variety of laws for observational equivalence

havebeenestablishedandseveralgeneralproof techniqueshavebeendevelopedfor establishingsuch
laws. In addition to developingthebasictheoryof for ouractor language,thereiswork in progressto
formalizethe semanticsin thePVS proofdevelopmentsystem[12]anddevelopmechanicallychecked
proofsof the main theorems.This is a first steptowardsbuildingof asetof toolsfor computeraided
specificationand designof opendistributedsystems.The formalizationworkhasalreadyresulted
in severalimprovementsin the structureof the semanticmodel. Workis in progressdevelopinga
calculusof componentof opensystemsbasedonouractormodel.This includesabstractingfrom the
particular choiceof language and developing an interaction semantics based on patterns of message
passing.

1.4 Open Mechanized Reasoning Systems.

The ultimate goal of this work is to provide a framework and a methodology which will allow users, and

not only system developers, to construct complex reasoning systems by composing existing modules,

or to add new modules to existing systems, in a "plug and play" manner. These modules and systems

might be based on different logics; have different domain models; use different vocabularies and data

structures; use different reasoning strategies; and have different interaction capabilities. The paper [7]

reports two recent contributions towards this goal. First, it proposes a general architecture for a class

of reasoning modules and systems called Open Mechanized Reasoning Systems (OMRSs). An OMRS

has three components: a reasoning theory component which is the counterpart of the logical notion of

formal system, a control component which consists of a set of inference strategies, and an interaction

component which provides an OMRS with the capability of interacting with other systems, including

OMRSs and human users. Second, it develops the theory underlying the reasoning theory component.

This development is motivated by an analysis of state of the art systems. The resulting theory is then

validated by using it to describe the integration of the linear arithmetic module into the simplification

process of the Boyer-Moore system, NQTHM.

A reasoning theory is given by a sequent system and a set of rules. Associated to each reasoning

theory is a set of reasoning structures. These structures represent fragements of deductions. They may

be schematic (holes left to be filled in) and/or provisional (with unsolved constraints). Only certain

general features of sequents and rules are needed to describe the notions of reasoning structure and

derivation associated to a reasoning theory, and the operations for constructing reasoning structures.

These are abstracted in the notions of sequent system and abstract rule. This allows us to decouple the

definitions of reasoning structure and derivation from the details of any specific notation for presenting

sequent systems and rules.

An importanat aspect that is currently missing from the OMRS framework is a notion of model

or semantics. In [15], we examined the notion of logical system [11] as a possible framework for

specifying the semantic behavior of components of automated reasoning systems and for describing

sound interconnections between these components. Of particular importance are maps between logical

systems. They provide translations needed for communication between OMRS. They also provide a

basis for use of systems as components in heterogeneous combinations and for developing a calculus

of reasoning theory modules.

Another important direction of future work is to include mechanisms for encapsulating and sharing

structures, and for interaction. Preliminary ideas and results on developing the interaction aspect of

OMRS are reported in [16]. Interaction semantics will be based both on logical systems work and

on our work on components of open distributed systems (see above). A full logical system [11] also

contains a notion of model and semantics for seq_ents. Extending the notion of OMRS to include

semanticsis an important topic for future work. Another important directionof future work is to
includemechanismsfor encapsulatingand sharingstructures,andfor interaction.Preliminaryideas
andresultsondevelopingthe interactionaspectof OMRSarereportedin [16]. Interactionsemantics
will bebasedbothon logicalsystemsworkandonourworkoncomponents of open distributed systems

(see above).

1.5 Analysis of Integration in the Boyer-Moore Prover

As a test of the reasoning theory framework, we have carried out an analysis of the Boyer-Moore

prover, NQTHM. We focused on the integration of the linear-arithmetic module as described in [5].

The analysis is sketched in Part III of [7]. A more detailed description will be provided in a forthcoming

report [8].

We chose this example as our first benchmark for several reasons. NQTHM is a mature system

that is highly tuned and has a large user community. A better understanding of how it works is by

itself of considerable interest), NQTHM is thoroughly documented, and it constitutes one of the most

challenging case studies we could think of.

One of the main difficulties in the integration of a new module into a tightly coded system like

NQTHM is that the existing procedures must be modified to generate, manipulate and propagate the

information needed or generated by the new module. For example, in the case of integration of linear

arithmetic, the local context information is represented in two ways: as typeset information and as

polynomial information. In addition, the linear arithmetic module generates additional assumptions

and dependency information that the rewriter must propagate. One of our main goals here is to show

how the extra information and modifications can be isolated inside the definition of the sequent system

and rules of the modified system. The methodology we use is the following:

(1) Specification of the original system;

(2) Specification of the module to be added;

(3) Refinement of the specification of the original system to incorporate the additional information

passed to and from the new module.

(4) "Gluing together" of the new module and the modified system, which might require the addition

of new bridge rules.

We conclude our analysis of NQTHM by giving some example reasoning structures representing

NQTHM deductions. We do this both to give some realistic examples, and to suggest how this

methodology can be applied to provide NQTHM with the (presently missing) capability of producing

proof structures.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, Mass., 1986.

[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation, 199?

to appear. 5

[3] G. Agha, I. A. Mason,S.F. Smith,and C. L. Talcott. Towardsa theoryof actorcomputation.
In The Third International Conference on Concurrency Theory (CONCUR '92), volume 630 of

Lecture Notes in Computer Science, pages 565-579. Springer Verlag, August 1992.

[4] Gul Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125-

141, September 1990.

[5] Robert S. Boyer and J. Strother Moore. Integrating decision procedures into heuristic theorem

provers: A case study of linear arithmetic. Technical Report ICSCA-CMP-44 , Institute for

Computing Science, University of Texas at Austin, 1985.

[6] S. Feferman. Finitary inductively presented logics. In Logic colloquium 88, pages 191-220. North-

Holland, 1988.

[7] F.. Giunchiglia and C. L. Pecchiari, P. Talcott. Reasoning theories: Towards an architecture for

open mechanized reasoning systems, November 1994.

[8] F. Giunchiglia, P. Pecchiari, and C. Talcott. An analysis of the reasoning structures and rules

underlying the integration of linear arithmetic in to the Boyer-Moore prover, in preparation.

[9] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of Artificial

Intelligence, 8(3):323-364, 1977.

[10] S. Mathews. Metatheory and reflection. In Proceedings of CADE-12 workshop on Correctness

and Metatheoretic Extensibility of Automated Reasoning Systems, pages 4-5, 1994.

[11] Jos_ Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic Colloquium'87, pages

275-329. North-Holland, 1989.

[12] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system, 1992.

[13] C. L. Talcott. Binding structures. In Vladimir Lifschitz, editor, Artificial Intelligence and

Mathematical Theory of Computation. Academic Press, 1991.

[14] C. L. Talcott. Towards a theory of binding structures. In Second International Conference on

Algebraic Methodology and Software Technology, AMAST, 1991. to appear in LNCS, full version

to appear in TCS.

[15] C. L. Talcott. Towards a framework for specifying components of automated reasoning systems: A

report on work in progress. In TTCP XTP-1 Workshop on E._ective Use o/Automated Reasoning

Technology in System Development (EUARTSD), 1992.

[16] C. L. Talcott. Reasoning specialists should be logical services, not black boxes. In Proceedings of

CADE-12 workshop on Theory Reasoning in Automated Deduction, pages 1-6, 1994.

[17] C.L. Talcott. A theory of binding structures and its applications to rewriting. Theoretical

Computer Science, 112:99-143, 1993.

2 Deductive Technology for Software Development

Our research concentrated on the following topics:

2.1 Automated Deduction

New Deduction Rules [19]

We developed inferences rules to achieve abbreviated proofs in theories possessing certain monotonicity

properties, such as transitivity and substitutivity. These rules are extensions of the relation

replacement and relation matching rules.

The relation replacement rule was extended to allow the formula undergoing replacement to

experience additional repercussions. The extended rule subsumes the negative paramodulation rule

and gives a cleaner treatment to relation strengthening, which was handled in an ad hoc way by the

original relation-replacement rule.

The relation replacement rule, when used alone, is incomplete. The relation matching rule was

extended to match distinct predicate and function symbols and to allow the reordering of their

arguments. The new rules allow shorter proofs and a smaller search space than if monotonicity

properties are represented explicitly.

Temporal Deduction [21]

We developed a deductive system for predicate temporal logic with induction. This deductive system

is relatively complete.

Representing temporal operators by first-order expressions enables temporal deduction to use the

already developed techniques of first-order deduction. But when translating from temporal logic

to first-order logic is done indiscriminately, the ensuing quantifications and comparisons of time

expressions encumber formulas, hindering deduction. In our deductive system, translation occurs more

carefully, via reification rules. These rules paraphrase selected temporal formulas as nontemporal first-

order formulas with time annotations. This process of time reification suppresses quantifications (the

process is analogous to quantifier skolemization) and uses addition instead of complicated combinations

of comparisons. Some ordering conditions on arithmetic expressions can arise, but these are handled

automatically by a special-purpose unification algorithm plus a decision procedure for Presburger
arithmetic.

2.2 Program Synthesis

Realizability and Synthesis [1]

We present two algorithms: a realizability-checking algorithm and a synthesis algorithm. Given a

specification of reactive asynchronous modules expressed in propositional ETL (Extended Temporal

Logic), the realizability-checking algorithm decides whether the specification has an actual imple-

mentation, under the assumptions of a random environment and fair execution. It also creates a

structure which can then be transformed by the syTnthesis algorithm into a program, represented as a

labeledfinite automaton.Unlikepreviousapproaches,the realizability-checkingalgorithmcanhandle
fairnessassumptions.The realizability-checkingalgorithm is incrementalandit directly manipulates
formulasin linear temporal logic without havingto transforminto a branching-timelogicor other
representations.

The Deductive Synthesis of Computer Programs [18]

Program synthesis is the systematic derivation of a computer program to meet a given specification.

Here the specification is a general description of the purpose of the desired program, while the program

is a detailed description of a method for achieving that purpose. The particular emphasis of this project

is on the development of deductive techniques, i.e., techniques based on theorem proving, for program

synthesis. These techniques are amenable to automatic implementation, but may be used interactively

or for the formal explication of informal derivations discovered by hand.

Some achievements of the project are as follows:

• Synthesis of a class of recursive unification algorithms (algorithms for finding a common instance

of two expressions).

• Development of a situational logic for the synthesis of nonapplicative programs (programs with

side effects).

• Introduction of deduction rules giving accelerated performance for relations of special importance

to program synthesis (such as equality and ordering relations).

• Synthesis of a class of real-number algorithms employing the binary-search technique (such as

binary-search square-root algorithm).

• Completion of a survey summarizing on a more elementary level the deductive approach to

program synthesis.

2.3 Temporal Logic

A Hierarchy of Temporal Properties [3]

We proposed a classification of temporal properties into a hierarchy which refines the known sa/ety-

liveness classification of properties. The classification is based on the different ways a property of

finite computations can be extended into a property of infinite computations.

This hierarchy was studied from three different perspectives, which were shown to coincide. We

examined the cases in which the finitary properties, and the infinitary properties extending them, are

unrestricted, specifiable by temporal logic, or specifiable by predicate automata. The unrestricted

view leads also to a topological characterization of the hierarchy as corresponding to the lowest two

levels in the Borel hierarchy.

For properties that are expressible by temporal logic and predicate automata, we provided a

syntactic characterization of the formulas and automata that specify properties of the different classes.

Corresponding to each class of properties, we presented a proof principle that is adequate for

proving the validity of properties in that class. 8

2.4 Reactive Systems

Temporal Proof Methodology for Reactive Systems [15]

We developed a minimal proof theory which is adequate for proving the main important temporal

properties of reactive programs. The properties we consider consist of the classes of invariance,

response, and precedence properties. For each of these classes we present a small set of rules that is

complete for verifying properties belonging to this class. We illustrate the application of these rules on

several examples. We discuss concise presentations of complex proofs using the devices of transition

tables and proof diagrams.

Verification Diagrams [17]

Most formal approaches to the verification of temporal properties of reactive programs infer temporal

conclusions from verification conditions that are state formulas, i.e., contain no temporal operators.

These proofs can often be effectively presented by the use of verification diagrams. We introduced

verification diagrams as a tool for proving various temporal properties.

Beginning with safety properties, we present wait-for and invariance diagrams for proving wait-

for (precedence) and invariance formulas. Proceeding to liveness properties, we present verification

diagrams for response properties that require a bounded number of helpful steps (chain diagrams) and

response properties that require an unbounded number of helpful steps (rank diagrams).

Additional types of diagrams are proposed for handling response properties for parameterized

programs and response properties that rely on the full spectrum of fairness requirements, including

compassionate helpful transitions.

2.5 Real-time Systems

Temporal Proof Methodologies for Real-tlme Systems [5],[6]

We extended the specification language of temporal logic, the verification framework, and the

underlying computational model to deal with real-time properties of concurrent and reactive systems.

A global, discrete, and asynchronous clock is incorporated into the model by defining the abstract

notion of a real-time transition system as a conservative extension of traditional transition systems:

qualitative fairness requirements are replaced (and superseded) by quantitative lower-bound and

upper-bound real-time requirements for transitions.

We showed how to model programs that communicate either through shared variables or by message

passing, and how to represent the important real-time constructs of priorities (interrupts), scheduling,
and timeouts in this framework.

Two styles for the specification of real-time properties were presented. The first style uses bounded

versions of the temporal operators; the real-time requirements expressed in this style are classified into

bounded-invariance and bounded-response properties. The second specification style allows explicit

references to the current time through a special clock variable.

Corresponding to the two styles of specification, we developed two very different proof method-

ologies for the verification of real-time properties egxpressed in these styles. For the bounded-operators

style, we provided proof rules to establish lower and upper real-time bounds for response properties

of real-time transition systems. For the explicit-clock style, we exploited the observation that, when

given access to the clock, every real-time property can be reformulated as a safety property, and use

the standard temporal rules for establishing safety properties.

Verification of Real-Time Systems [7]

We extend the specification language of temporal logic, the corresponding verification framework, and

the underlying computational model to deal with real-time properties of reactive systems. The abstract

notion of timed transition systems generalizes traditional transition systems conservatively: qualitative

fairness requirements are replaced (and superseded) by quantitative lower-bound and upper-bound

timing constraints on transitions. This framework can model real-time systems that communicate

either through shared variables or by message passing and handle real-time issues such as timeouts,

process priorities (interrupts), and process scheduling.

We exhibit two styles for the specification of real-time systems. While the first approach uses time-

bounded versions of the temporal operators, the second approach allows explicit references to time

through a special clock variable. Corresponding to the two styles of specification, we present and

compare two different proof methodologies for the verification of timing requirements that are expressed

in these styles. For the bounded-operator style, we provide a set of proof rules for establishing bounded-

invariance and bounded-response properties of timed transition systems. This approach generalizes the

standard temporal proof rules for verifying invariance and response properties conservatively. For the

explicit-clock style, we exploit the observation that every time-bounded property is a safety property

and use the standard temporal proof rules for establishing safety properties.

Compositional Verification of Real-time Systems [4]

We developed a compositional proof system for the verification of real-time systems. Real-time systems

are modeled as timed transition modules, which explicitly model interaction with the environment and

may be combined using composition operators.

Composition rules are devised such that the correctness of a system may be determined from

the correctness of its components. These proof rules are demonstrated on Fischer's mutual exclusion

algorithm, for which mutual exclusion and bounded response are proven.

2.6 Hybrid Systems

Specification and Verification of Hybrid Systems [9],[13]

We developed a framework for the formal specification and verification of timed and hybrid systems.

For timed systems we proposed a specification language that refers to time only through age functions

which measure the length of time that a given formula has continuously been true.

We then considered hybrid systems, which are systems consisting of a non-trivial mixture of discrete

and continuous components, such as a digital controller that controls a continuous environment, control

of process and manufacturing plants, guidance of transport systems, and robot planning. The proposed

framework extends the temporal logic approach _hich has proven useful for the formal analysis of

discretesystemssuchas reactiveprograms. The new frameworkconsistsof a semanticmodelfor
hybrid time, the notionof phase transition systems, which extends the formalism of discrete transition

systems, an extended version of Statecharts for the specification of hybrid behaviors, and an extended

version of temporal logic that enables reasoning about continuous change.

Models for Reactivity [14]

A hierarchy of models that captures realistic aspects of reactive, real-time, and hybrid systems was

introduced. On the most abstract level, the qualitative (non-quantitative) model of reactive systems

captures the temporal precedence aspect of time. A more refined model is that of real-time systems,

which represents the metric aspect of time. The third and most detailed model is that of hybrid

systems, which allows the incorporation of continuous components into a reactive system.

For each of the three levels, we developed a computational model, a requirement specification

language based on extensions of temporal logic, system description languages based on Statecharts

and a textual programming language, proof rules for proving validity of properties, and examples of

such proofs.

Hybrid Temporal Logic [8]

We propose a methodology for the specification, verification, and design of hybrid systems. The

methodology consists of the computational model of Concrete Phase Transition Systems (CPTS), the

specification language of Hybrid Temporal Logic (HTL), the graphical system description language

of Hybrid Automata, and a proof system for verifying that hybrid automata satisfy their HTL

specifications.

The novelty of the approach lies in the continuous-time logic, which allows specification of both

point-based and interval-based properties and provides direct references to derivatives of variables, and

in the proof system that supports verification of point-based and interval-based properties. The proof
rules demonstrate that sound and convenient induction rules can also be established for continuous-

time logics and are not necessarily restricted to discrete logics. The proof rules are illustrated on

several examples.

Design of Controlled Systems [22]

We propose a conceptual framework to support specification, design and verification of programs

controlling physical systems. We introduce a computational model that represents the controller

capabilities and distinguishes between synchronous and phase transitions. A graphical system

description language is proposed that we believe is readily accessible to control engineers. We formalize

the notion of control strategy in controller design.

2.7 Computer-Aided Verification Systems

TABLEAU:- An Interactive Graphic Deductive System

We have collaborated with a software-development team in developing an interactive theorem prover,

TABLEAU, based on the deductive-tableau framew_rlk. Implemented on an Apple Macintosh computer,

the systemusesa graphical interfaceto communicatewith the user. Rather than relying on the
keyboard,the usermay selectwith a mousewhichstep in the proof to attempt next. Although
directing the proof is the responsibilityof the user,the systemintervenesif the userattempts an
illegalstep. The systemcanconstructproofsin propositionaland predicatelogic, in theoriesof the
nonnegativeintegers,trees,and tuples,and in new theoriesintroducedby the user. The system
complementsthe textbook [20]andis availablefor classroomuse.

Thesystemhasa combinationof featureslackingelsewhere.In particular,

• It canhandletheoremswith both universalandexistentialquantifiers.

• It canproduceproofsby mathematicalinduction,includingwell-foundedinduction.

• It hasspecialprovisionsfor reasoningaboutequality.Furthermore,the convenientinterfaceof
the systemmakesit far easierto usein constructingadetailedproofthan it is to provethe same
theoremby hand,a featureunfortunatelynotsharedwith manysystems.

Thesystemhasbeenaugmentedin severaldirections:

• Introducedthe capabilityof addingnewdeductionrules.This wouldfacilitate the application
of the systemto newtheories.

• Introduced a facility for extracting informationfrom proofs. This informationcould be a
program,a plan,or adatabasetransaction.

• Allowedthegradualautomationof the system.In particular,wewouldlike to automatecertain
routine and repetitiveaspectsof the proofprocess.

STEP: the Stanford Temporal Prover [10], [11]

STeP (the Stanford Temporal Prover) is a system to support computer-aided verification of reactive

systems based on their temporal specifications. Unlike most systems for temporal verification, STeP

does not concentrate solely on finite-state systems. It combines model checking with algorithmic

deductive methods (decision procedures) and interactive deductive methods (theorem proving). The

user is expected to interact with the system and provide, whenever necessary, top-level guidance in

the form of auxiliary invariants for safety properties, and well-founded measures and intermediate

assertions for progress properties. In short, STeP has been designed with the objective of combining

the expressiveness of deductive methods with the simplicity of model checking.

Development efforts have been focused, in particular, in the following areas.

First, in addition to the textual language of temporal logic, the system supports a structured

visual language of verification diagrams ([16]) for guiding proofs. Verification diagrams allow the user

to construct proofs hierarchically, starting from a high-level, intuitive proof sketch and proceeding

incrementally, as necessary, through layers of greater detail.

Second, the system implements powerful techniques (algorithmic and heuristic) for automatic

invariant generation. Deductive verification in the temporal framework almost always relies heavily on

finding, for a given program and specification, suitably strong invariants and intermediate assertions.

The user can typically provide an intuitive, high-le]e,j invariant, from which the system derives stronger,

top-down invariants. Simultaneously, bottom-up invariants are generated automatically by analyzing

the program text. By combining these two methods, the system can often deduce sufficiently detailed

invariants to carry through the entire verification process.

Finally, the system provides a built-in facility for automatically checking a large class of first-order

and temporal formulas, based on simplification methods, term rewriting, and decision procedures.

This degree of automated deduction is sufficient to handle most of the verification conditions that arise

during the course of deductive verification -- and the few conditions that are not solved automatically

correspond to the critical steps of manually constructed proofs, where the user is most capable of

providing guidance.

Although the system is in an early stage of development, many of the examples in the Manna-Pnueli

textbook ([17]) have already been automatically verified using STEP.

2.8 Ph.D. Thesis

Compositional Verification [2]

This thesis presents a compositional methodology for the verification of reactive and real-time systems.

The correctness of a given system is established from the correctness of the system's components, each

of which may be treated as a system itself and further reduced. When no further reduction is possible

or desirable, global techniques for verification may be used to verify the bottom-level components.

Transition modules are introduced as a suitable compositional model of computation. Various

composition operations are defined on transition modules, including parallel composition, sequential

composition, and iteration. A restricted assumption-guarantee style of specification is advocated,

wherein the environment assumption is stated as a restriction on the environment's next-state relation.

Compositional proof rules are provided in accordance with the safety-progress hierarchy of temporal

properties.

The compositional framework is then extended naturally to real-time transition modules and

discrete-time metric temporal logic.

2.9 Books

Reactive Programs: Temporal Specification [12]

Reactive programs are programs whose role is to maintain an on-going interaction with their

environment, rather than to produce some computational result on termination. Programs belonging

to this class are usually described by some of the attributes: concurrent, distributed, real-time,

and typical examples of such programs are: embedded programs, communication networks, control

programs of industrial plants, operating systems, real-time programs, etc. Clearly, the correct and

reliable construction of such programs is one of the most challenging programming tasks existing today.

Due to the special character of these programs, the formal approach to their specification and

development must be based on the study of their behavior rather than on the function or relation they

compute, an approach which has been adequate for computational and sequential programs.

13

We developedformal methodsfor the specification,verificationand developmentof reactive
programs,basedon the formalismof temporal logic that has been specifically developed to reason
about behaviors of reactive programs.

Among the topics we investigated are:

• Modeling reactive programs as fair transition systems.

• The language of temporal logic and its usage for the specification of program properties and

system requirements.

• A classification of specifications into the classes of safety properties, responsiveness properties,
and so on.

Deductive Foundations [20]

The research papers in which we have presented the deductive approach to program synthesis have

been addressed to the usual academic readers of the scholarly journals. In an effort to make this

work accessible to a wider audience, including computer science undergraduates and programmers, we

have developed a more elementary treatment in the form of a book, The Deductive Foundations of

Computer Programming, Addison-Wesley.

The text includes some novel research results, including

• theories of integers, tuples, and trees which are particularly well suited to theorem-proving and
program-synthesis applications;

• a nonclausal version of skolemization;

• a treatment of mathematical induction in the deductive-tableau framework.

Reactive Systems: Temporal Verification [17]

We studied in detail the proof methodologies for verifying temporal properties of reactive systems.

Appropriate proof principles were presented for each class of temporal safety and progress properties.

We developed proof principles for the establishment of safety properties. We showed that essentially

there is only one such principle for safety proofs, the invariance principle, which is a generalization of

the method of intermediate assertions. We also indicated special cases under which these assertions

can be found algorithmically.

We illustrate the application of these rules on many examples. We suggest concise presentations

of complex proofs using the devices of transition tables and verification diagrams.

Among the topics we investigated are:

• Methodologies for formal verification of the safety properties of a reactive program, and

development approaches derived from them.

• Methodologies for formal verification of the responsiveness properties of a reactive program, and

development approaches derived from them.

• Finite-state programs and associated automatic verification tools for them.
14

References

[1]

[2]

D]

[4]

[5]

[8]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

A. Anuchitanukul and Z. Manna. Realizability and Synthesis of Reactive Modules. In 6th

Conference on Computer Aided Verification, Lecture Notes in Computer Science 818, Springer-
Verlag, 1994, pp. 156-168.

E. Chang. Compositional Verification of Reactive and Real-Time systems. Ph.D. Thesis,
Computer Science Department, Stanford University, 1994.

E. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property classes. In Proc. 19th

Int. Colloq. Aut. Lang. Prog., Lect. Notes in Comp. Sci. 623, Springer-Verlag, pp. 474-486, 1992.

E. Chang, Z. Manna and A. Pnueli. Compositional Verification of Real-Time Systems. Symposium

on Logic in Computer Science, Paris, Lecture Notes in Computer Science, Springer-Verlag, pp.
458-465. 1994.

T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In J.W. de Bakker, C. Huizing,

W.P. de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop "Real-Time:

Theory in Practice", volume 600 of Lect. Notes in Comp. Sci., pages 226-251. Springer-Ver]ag,
1992.

T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In W. Kuich, editor,

Proc. 19th Int. Colloq. Aut. Lang. Prog., volume 623 of Lect. Notes in Comp. Sci., pages 545-558.
Springer-Verlag, 1992.

T. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Methodologies for Timed Transition

Systems. Information and Computation journal, Vol. 112, No. 2, pp. 273-337, 1994.

A. Kapur, T. Henzinger, Z. Manna, and A. Pnueli. Proving Properties of Hybrid Systems.

International Symposium on Formal Techniques in Real Time and Fault Tolerant Systems, Lecture

Notes in Computer Science, Springer-Verlag, 1994.

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker, C. Huizing,

W.P. de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop "Real-Time:

Theory in Practice ", volume 600 of Lect. Notes in Comp. Sci., pages 447-484. Springer-Verlag,
1992.

Z. Manna. Beyond Model Checking. 6th Conference on Computer Aided Verification, Lecture

Notes in Computer Science, Springer-Verlag, 1994.

Z. Manna, N. Bjorner, A. Browne, E. Chang, M. Colon, L. de Alfaro, H. Devarajan, H. Sipma, and
T. Uribe. STEP: Stanford Temporal Prover, Computer Science Department, Stanford University,
1994.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.

Springer-Verlag, New York, 1991.

Z. Manna and A. Pnueli. Time for concurrency. In INRIA's 25th Anniversary Volume, volume

653 of Lect. Notes in Comp. Sci., pages 129-153. Springer-Verlag, 1992.

[14] Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, Vol. 30, pp. 609-678. 1993.

15

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Z. Manna and A. Pnueli. A temporal proof methodology for reactive systems. In Program Design

Calculi, NATO ASI Series, Series F: Computer and System Sciences. Springer-Verlag, Vol. 118,
1993.

Z. Manna and A. Pnueli. Temporal Verification Diagrams. International Symposium on

Theoretical Aspects of Computer Software, Lecture Notes in Computer Science 789, Springer-
Verlag, pp. 726-765, 1994.

Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems. Springer-Verlag, New York
(to appear, 1995).

Z. Manna and R. Waldinger. Fundamentals of deductive program synthesis. IEEE Trans. Software
Engin., 18(8):674-704, 1991.

Z. Manna and R. Waldinger. The special-relation rules are incomplete. In Proc. of the 11th Conf.

on Automated Ded., volume 607 of Lect. Notes in Cornp. Sci., pages 492-506. Springer-Verlag,
1992.

Z. Manna and R. Waldinger. The Deductive Foundations of Computer Programming. Addison-
Wesley, 1993.

H. McGuire, Z. Manna and R. Waldinger. Annotation-Based Deduction in Temporal logic. First

International Conference on Temporal Logic, Lecture Notes in Computer Science, Springer-Verlag,
1994.

H.B. Sipma and Z. Manna, Specification and Verification of Controlled Systems. International

Symposium on Formal Techniques in Real Time and Fault Tolerant Systems, Lecture Notes in

Computer Science, Springer-Verlag, 1994.

16

DOC #: 34007 ABSTRACT SCREEN PAGE: 1

Open architectures for formal reasoning and deduct

ive technologies for software development

** WORDS NOT FOUND *

ABQ: NC
ABA: Author

The objective of this project is to develop an

open architecture for formal reasoning systems.

One goal is to provide a framework with a clear

semantic basis for specification and instantiation

of generic components; construction of complex

systems by interconnecting components; and for

making incremental improvements and tailoring to

specific applications. Another goal is to develop

methods for specifying component interfaces and

interactions to facilitate use of existing and

newly built systems as 'off the shelf' components,

thus helping bridge the gap between producers and
consumers of reasoning systems. In this report we

summarize results in several areas: our data base

of reasoning systems; a theory of binding

structures; a theory of components of open

systems; a framework for specifying components of

open reasoning system; and an analysis of the

integration of rewriting and linear arithmetic
modules in Boyer-Moore using the above framework.

INSTANTIATION

REWRITING

CIN: SAF

KIN: JXP

AIN:

PFI=ABA LIST; PF2=RESET; PF3=SIGNON; PF4=RELEASE FROM SUBQ; PF5=SELECTION;

PF6=SUBQUEUE; PF7=STORE ABSTRACT; PFS=MAI; PFI0=SEND TO 'MAIQ';

PFI4=PREVIOUS PAGE; PFI5=NEXT PAGE; PFI9=TITLE-EXT; PF20=INDEX TERMS
4B. A =-.PC LINE ii COL 2

DOCNUMBER:34007 INDEXING:SUBJECT/TERMSSCREEN
TITLE: Openarchitectures for formal reasoning and deduct

ive technologies for software development
MAJORTERMS: SWITCH

I: COMPUTERPROGRAMMING
2: SOFTWAREENGINEERING
3: COMPLEXSYSTEMS
4: DISTRIBUTEDPROCESSING
5: ARCHITECTURE(COMPUTERS)
6: SEMANTICS
7: INFORMATIONTRANSFER
8: SOFTWARETOOLS
9: HUMAN-COMPUTERINTERFACE

I0: COGNITION
ii: MATHEMATICALLOGIC
12:
13:
14:
15:

MINORTERMS:
i: DATABASES
2: MODULES
3: AUTOMATATHEORY
4: INTERNETS
5:
6:
7:
8:
9:

i0:

ii:

12:

13:

14:

15:

PROPOSED TERMS:

m

m

w

D

F

w

m

CIN: SAF

KIN: JXP

AIN:

PF2=RESET; PF3=SIGNON; PF4=RELEASE; PFS=SELECTION; PF6=SUBQ
PFI0:ALPHA; PFII=HIERARCHY; PFI2:STORE; PFI3:CENTRAL SCREEN; PF20=TITLE/WNF

4B. A =-.PC LINE 6 COL ii

